Cell Migration According to Shape of Graphene Oxide Micropatterns
نویسندگان
چکیده
Photolithography is a unique process that can effectively manufacture micro/nano-sized patterns on various substrates. On the other hand, the meniscus-dragging deposition (MDD) process can produce a uniform surface of the substrate. Graphene oxide (GO) is the oxidized form of graphene that has high hydrophilicity and protein absorption. It is widely used in biomedical fields such as drug delivery, regenerative medicine, and tissue engineering. Herein, we fabricated uniform GO micropatterns via MDD and photolithography. The physicochemical properties of the GO micropatterns were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. Furthermore, cell migration on the GO micropatterns was investigated, and the difference in cell migration on triangle and square GO micropatterns was examined for their effects on cell migration. Our results demonstrated that the GO micropatterns with a desired shape can be finely fabricated via MDD and photolithography. Moreover, it was revealed that the shape of GO micropatterns plays a crucial role in cell migration distance, speed, and directionality. Therefore, our findings suggest that the GO micropatterns can serve as a promising biofunctional platform and cell-guiding substrate for applications to bioelectric devices, cell-on-a-chip, and tissue engineering scaffolds.
منابع مشابه
Modeling cell shape and dynamics on micropatterns
Adhesive micropatterns have become a standard tool to study cells under defined conditions. Applications range from controlling the differentiation and fate of single cells to guiding the collective migration of cell sheets. In long-term experiments, single cell normalization is challenged by cell division. For all of these setups, mathematical models predicting cell shape and dynamics can guid...
متن کاملPassive control of cell locomotion using micropatterns: the effect of micropattern geometry on the migratory behavior of adherent cells.
Directed cell migration is critical to a variety of biological and physiological processes. Although simple topographical patterns such as parallel grooves and three-dimensional post arrays have been studied to guide cell migration, the effect of the dimensions and shape of micropatterns, which respectively represent the amount and gradient of physical spatial cues, on cell migration has not ye...
متن کاملRelevance between MRI longitudinal relaxation rate and gadolinium concentration in Gd3+/GO/alginate nanocomposite
Objective(s): Relevance between magnetic resonance imaging (MRI) relaxation rate and concentration of magnetic nanoparticles determines the capability of a nanomaterial to provide MRI contrast. In the present study, alginate was conjugated to gadolinium/graphene oxide nanocomposite to form gadolinium/graphene oxide/alginate nanocomposite, aiming to investigate its effect on the relevance betwee...
متن کاملSYNTHESIS AND STRUCTURAL, MAGNETIC, AND ELECTROMAGNETIC CHARACTERIZATION OF COBALT FERRITE / REDUCED GRAPHENE OXIDE COMPOSITE
In this research, cobalt ferrite powders (CoFe2O4) and cobalt ferrite/reduced graphene oxide composite (CoFe2O4/RGO) were synthesized by the co-precipitation method. The phase structure, morphology, magnetic properties, and microwave absorption properties of the produced samples were investigated through various techniques. X-ray diffraction test indicated the successful formation of pure CoFe2...
متن کاملManipulation of Human Mesenchymal Stem Cells by Multifunctional Graphene-PEDOT Microelectrode Arrays
In this study, we report the development of all-solution-processed multifunctional organic bioelectronics, comprising reduced graphene oxide (rGO) and dexamethasone 21-phosphate disodium salt (DEX) drug loaded poly(3,4-ethylenedioxythiophene) (PEDOT) microelectrode arrays on indium tin oxide glass, that can be used to manipulate human mesenchymal stem cell (hMSC) spreading morphology on rGO mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Micromachines
دوره 7 شماره
صفحات -
تاریخ انتشار 2016